Arithmetic operators perform basic mathematical operations like addition, subtraction, etc.
a, b = 10, 3
print("Addition:", a + b) # Adds a and b
print("Subtraction:", a - b) # Subtracts b from a
print("Multiplication:", a * b) # Multiplies a and b
print("Division:", a / b) # Divides a by b
print("Modulus:", a % b) # Finds remainder of a/b
print("Exponent:", a ** b) # Computes a raised to b
print("Floor Division:", a // b) # Divides and truncates the result
Output:
Addition: 13
Subtraction: 7
Multiplication: 30
Division: 3.3333333333333335
Modulus: 1
Exponent: 1000
Floor Division: 3
Relational operators compare two values and return True
or False
.
a, b = 10, 3
print("Equal to:", a == b)
print("Not equal to:", a != b)
print("Greater than:", a > b)
print("Less than:", a < b)
print("Greater than or equal to:", a >= b)
print("Less than or equal to:", a <= b)
Output:
Equal to: False
Not equal to: True
Greater than: True
Less than: False
Greater than or equal to: True
Less than or equal to: False
Assignment operators are used to assign values to variables.
a = 5
a += 2 # Same as a = a + 2
print("a after += 2:", a)
a *= 3 # Same as a = a * 3
print("a after *= 3:", a)
Output:
a after += 2: 7
a after *= 3: 21
Logical operators (and
, or
, not
) are used for boolean operations.
x, y = True, False
print("x and y:", x and y) # True if both are True
print("x or y:", x or y) # True if either is True
print("not x:", not x) # Negates x
Output:
x and y: False
x or y: True
not x: False
Bitwise operators perform operations on binary representations of integers.
a, b = 5, 3 # Binary: a = 101, b = 011
print("Bitwise AND:", a & b) # Performs AND operation
print("Bitwise OR:", a | b) # Performs OR operation
print("Bitwise XOR:", a ^ b) # Performs XOR operation
Output:
Bitwise AND: 1
Bitwise OR: 7
Bitwise XOR: 6
A ternary operator is a shorthand for an if-else
statement.
a, b = 10, 20
max_value = a if a > b else b
print("Maximum value:", max_value)
Output:
Maximum value: 20
Membership operators check for the presence of a value in a sequence.
my_list = [1, 2, 3, 4]
print("3 in list:", 3 in my_list)
print("5 not in list:", 5 not in my_list)
Output:
3 in list: True
5 not in list: True
Identity operators check if two variables reference the same object.
a = 10
b = 10
print("a is b:", a is b)
print("a is not b:", a is not b)
Output:
a is b: True
a is not b: False
Complex numbers are represented as a + bj
in Python.
a = 2 + 3j
b = 1 + 4j
print("Addition:", a + b) # Adds the real and imaginary parts
print("Multiplication:", a * b) # Multiplies two complex numbers
Output:
Addition: (3+7j)
Multiplication: (-10+11j)
The program iterates through the string to count the characters.
string = "Hello, World!"
length = 0
for _ in string:
length += 1
print("Length of string:", length)
Output:
Length of string: 13
The in
operator checks if the substring exists in the string.
string = "Hello, World!"
substring = "World"
print("Substring found:", substring in string)
Output:
Substring found: True
The in
operator checks for the key in the dictionary.
my_dict = {"a": 1, "b": 2, "c": 3}
key = "b"
print("Key exists:", key in my_dict)
Output:
Key exists: True
This program adds a new key-value pair to a dictionary.
my_dict = {"a": 1, "b": 2}
my_dict["c"] = 3
print("Updated dictionary:", my_dict)
Output:
Updated dictionary: {'a': 1, 'b': 2, 'c': 3}
The array module allows creating and manipulating arrays.
from array import array
arr = array(‘i’, [1, 2, 3])
print(“Original array:”, arr)
arr.append(4)
print(“After append:”, arr)
arr.insert(2, 5)
print(“After insert:”, arr)
arr.reverse()
print(“Reversed array:”, arr)
Output:
Original array: array('i', [1, 2, 3])
After append: array('i', [1, 2, 3, 4])
After insert: array('i', [1, 2, 5, 3, 4])
Reversed array: array('i', [4, 3, 5, 2, 1])
Using NumPy for matrix operations like addition, transpose, and multiplication.
import numpy as np
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print(“Matrix Addition:\n”, A + B)
print(“Transpose of A:\n”, A.T)
print(“Matrix Multiplication:\n”, np.dot(A, B))
Output:
Matrix Addition:
[[ 6 8]
[10 12]]
Transpose of A:
[[1 3]
[2 4]]
Matrix Multiplication:
[[19 22]
[43 50]]
Here are the solutions with explanations, code, and expected outputs:
In Python, we can use the numpy
library to efficiently compute the minimum, maximum, sum, and cumulative sum of an array.
import numpy as np
# Create an array
arr = np.array([10, 20, 30, 40, 50])
# Perform operations
print("Array:", arr)
print("Minimum:", np.min(arr)) # Find minimum value
print("Maximum:", np.max(arr)) # Find maximum value
print("Sum:", np.sum(arr)) # Compute sum of elements
print("Cumulative Sum:", np.cumsum(arr)) # Compute cumulative sum
np.min(arr)
returns the smallest value in the array.np.max(arr)
returns the largest value in the array.np.sum(arr)
computes the sum of all elements.np.cumsum(arr)
computes the cumulative sum, where each element is the sum of itself and all previous elements.Array: [10 20 30 40 50]
Minimum: 10
Maximum: 50
Sum: 150
Cumulative Sum: [ 10 30 60 100 150]
We will create a dictionary where each key maps to a list of ten values, convert it into a pandas DataFrame, and then explore the DataFrame.
import pandas as pd
# Create a dictionary with five keys and lists of ten values each
data = {
"Column1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"Column2": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
"Column3": [21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
"Column4": [31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
"Column5": [41, 42, 43, 44, 45, 46, 47, 48, 49, 50],
}
# Convert the dictionary into a pandas DataFrame
df = pd.DataFrame(data)
# Explore the DataFrame
print("DataFrame:\n", df)
# a) Apply head() function to display the first 5 rows
print("\nFirst 5 rows using head():\n", df.head())
# b) Perform data selection operations
# Select a specific column
print("\nSelect 'Column1':\n", df["Column1"])
# Select specific rows
print("\nSelect first 3 rows:\n", df.iloc[:3])
# Select specific rows and columns
print("\nSelect first 3 rows of 'Column1' and 'Column2':\n", df.loc[:2, ["Column1", "Column2"]])
pd.DataFrame(data)
, we convert the dictionary into a DataFrame.df.head()
displays the first five rows of the DataFrame.df["Column1"]
selects a single column.df.iloc[:3]
selects the first three rows by index.df.loc[:2, ["Column1", "Column2"]]
selects specific rows and columns using labels.DataFrame:
Column1 Column2 Column3 Column4 Column5
0 1 11 21 31 41
1 2 12 22 32 42
2 3 13 23 33 43
3 4 14 24 34 44
4 5 15 25 35 45
5 6 16 26 36 46
6 7 17 27 37 47
7 8 18 28 38 48
8 9 19 29 39 49
9 10 20 30 40 50
First 5 rows using head():
Column1 Column2 Column3 Column4 Column5
0 1 11 21 31 41
1 2 12 22 32 42
2 3 13 23 33 43
3 4 14 24 34 44
4 5 15 25 35 45
Select 'Column1':
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
Name: Column1, dtype: int64
Select first 3 rows:
Column1 Column2 Column3 Column4 Column5
0 1 11 21 31 41
1 2 12 22 32 42
2 3 13 23 33 43
Select first 3 rows of 'Column1' and 'Column2':
Column1 Column2
0 1 11
1 2 12
2 3 13